SUMMARY

- 1. A potential V(r) which depends only on the radial coordinate r and is independent of the angular variables θ , ϕ is called a spherically symmetric potential or a central potential.
- 2. For a spherically symmetric potential, the wave function $\psi(r, \theta, \phi)$ can be written as a product of two functions; a radial function R(r) and an angular function $Y(\theta, \phi)$:

$$\psi(r, \theta, \phi) = R(r) Y(\theta, \phi)$$

- 3. The angular function, which is common to all central potentials, is the spherical harmonic $Y_{lm_l}(\theta, \phi)$ discussed in chapter 7. These are eigenfunctions of the operators L^2 and L_z with the eigenvalues $l(l+1)\hbar^2$ and $m_l\hbar$ respectively, where $l=0,1,2,\ldots$ and $m_l=l,l-1,\ldots,0,\ldots,-l+1,-l$.
- **4.** The radial function R(r) satisfies the equation

$$\frac{d^{2}R}{dr^{2}} + \frac{2}{r}\frac{dR}{dr} + \frac{2m}{\hbar^{2}} \left[E - V(r) - \frac{l(l+1)\hbar^{2}}{2mr^{2}} \right] R(r) = 0$$

Its solution depends on the precise form of the potential V(r).

5. For a hydrogenic atom, for which,

$$V(r) = -\frac{Ze^2}{4\pi\varepsilon_0 r}$$

the normalized radial eigenfunctions are

$$R_{nl}(r) = -\left\{ \left(\frac{2Z}{na_0} \right)^3 \frac{(n-l-1)!}{2n[(n+l)!]^3} \right\}^{1/2} e^{-\rho/2} \rho^l L_{n+l}^{2l+1}(\rho),$$

$$\rho = \left(\frac{2Zme^2}{n(4\pi\varepsilon_0)\hbar^2} \right) r$$

where

and $L_{n+l}^{2l+1}(\rho)$ is the associated Laguerre polynomial. n is called the principal quantum number and can have positive integral values.

6. The complete normalized energy eigenfunctions for a hydrogenic atom are

where
$$\begin{aligned} \psi_{nlm_l}(r,\theta,\phi) &= R_{nl}(r) \ Y_{lm_l}(\theta,\phi) \\ n &= 1, \ 2, \ 3, \ \dots \\ l &= 0, \ 1, \ 2, \ \dots, \ n-1 \\ m_l &= -l, \ -l+1, \ \dots, \ 0, \ \dots, \ l-1, \ l \end{aligned}$$

7. The bound-state energies for the hydrogenic atom are

$$E_n = -\frac{m}{2\hbar^2} \left(\frac{Ze^2}{4\pi\varepsilon_0} \right)^2 \frac{1}{n^2} = -\frac{1}{2} mc^2 \frac{(Z\alpha)^2}{n^2},$$

$$n = 1, 2, 3, ...,$$

where α is the fine structure constant.

The expression for E_n is same as that obtained in the Bohr model. The energy depends only on the principal quantum number n. Since for each n there are n^2 possible (lm_l) combinations, and hence as many eigenfunctions, the eigenvalues are n^2 -fold degenerate. The m_l -degeneracy is due to spherical symmetry of V(r); the l-degeneracy is characteristic of the Coulomb potential.

The complete normalized energy eigenfunctions for the hydrogenic atoms

$$\psi_{nlm_l}(r, \theta, \phi) = R_{nl}(r) Y_{lm_l}(\theta, \phi)$$

$$n = 1, 2, 3, ...; l = 0, 1, 2, ..., n - 1$$

$$m_l = -l, -l + 1, ..., 0, ..., l - 1, l$$

$$R_{nl}(r) = -\left\{ \left(\frac{2Z}{na_0} \right)^3 \frac{(n-l-1)!}{2n[(n+l)!]^3} \right\}^{1/2} e^{-\rho/2} \rho^l L_{n+l}^{2l+1}(\rho)$$

$$Y_{lm_{l}}(\theta,\phi) = (-1)^{m_{l}} \left[\frac{(2l+1)(l-m_{l})!}{4\pi (l+m_{l})!} \right]^{1/2} P_{l}^{m_{l}}(\cos\theta) e^{im_{l}\phi}, m_{l} \ge 0$$
and
$$Y_{lm_{l}}(\theta,\phi) = (-1)^{m_{l}} Y_{l,-m_{l}}^{*}(\theta,\phi), \qquad m_{l} \le 0$$

 $P_l^{m_l}$ Legendre function of degree l and order m_l is defined as,

$$P_l^m i(-\xi) = (-1)^{l-m_l} P_l^m i(\xi), m_l = 0, 1, 2, ..., l$$

For the case
$$m_l = 0$$

$$P_{l}(-\xi) = (-1)^{l} P_{l}(\xi)$$

The first few Legendre polynomials are:

$$P_0(\xi) = 1$$

$$P_1(\xi) = \xi$$

$$P_2(\xi) = \frac{1}{2}(3\xi^2 - 1)$$

$$P_3(\xi) = \frac{1}{2}(5\xi^3 - 3\xi)$$

$$P_4(\xi) = \frac{1}{8}(35\xi^4 - 30\xi^2 + 3)$$

$$P_5(\xi) = \frac{1}{8}(63\xi^5 - 70\xi^3 + 15\xi)$$

For the case $m_l \neq 0$

The first few associated Legendre functions are:

$$P_1^1(\xi) = (1 - \xi^2)^{1/2}$$

$$P_2^1(\xi) = 3(1 - \xi^2)^{1/2} \xi$$

$$P_2^2(\xi) = 3(1 - \xi^2)$$

$$P_3^1(\xi) = \frac{3}{2}(1 - \xi^2)^{1/2} (5\xi^2 - 1)$$

$$P_3^2(\xi) = 15\xi (1 - \xi^2)$$

$$P_3^3(\xi) = 15(1 - \xi^2)^{3/2}$$

The first three radial eigenfunctions are:

$$R_{10} = 2\left(\frac{Z}{a_0}\right)^{3/2} \exp\left(-\frac{Zr}{a_0}\right)$$

$$R_{20} = \left(\frac{Z}{2a_0}\right)^{3/2} \left(2 - \frac{Zr}{a_0}\right) \exp\left(-\frac{Zr}{2a_0}\right)$$

$$R_{21} = \frac{1}{\sqrt{3}} \left(\frac{Z}{2a_0}\right)^{3/2} \left(\frac{Zr}{a_0}\right) \exp\left(-\frac{Zr}{2a_0}\right)$$

The First Few Spherical Harmonics $Y_{lm_l}(\theta, \phi)$

I	m_I	Spherical Harmonic $Y_{lm_l}(\theta, \phi)$	
0	0	$Y_{0,0} = \frac{1}{(4\pi)^{1/2}}$	
1	0	$Y_{1,0} = \left(\frac{3}{4\pi}\right)^{1/2} \cos\theta$	
	±1	$Y_{1,\pm 1} = \mp \left(\frac{3}{8\pi}\right)^{1/2} \sin\theta \ e^{\pm i\phi}$	
2	0	$Y_{2,0} = \left(\frac{5}{16\pi}\right)^{1/2} (3 \cos^2 \theta - 1)$	
	±1	$Y_{2,\pm 1} = \mp \left(\frac{15}{8\pi}\right)^{1/2} \sin\theta \cos\theta \ e^{\pm i\phi}$	
	±2	$Y_{2,\pm 2} = \left(\frac{15}{32\pi}\right)^{1/2} \sin^2\theta \ e^{\pm 2i\phi}$	

The complete eigenfunctions for the lowest few states are:

$$\psi_{100} = \frac{1}{\pi^{1/2}} \left(\frac{Z}{a_0}\right)^{3/2} \exp\left(-\frac{Zr}{a_0}\right)$$

$$\psi_{200} = \frac{1}{\pi^{1/2}} \left(\frac{Z}{2a_0}\right)^{3/2} \left(1 - \frac{Zr}{2a_0}\right) \exp\left(\frac{-Zr}{2a_0}\right)$$

$$\psi_{210} = \frac{1}{\pi^{1/2}} \left(\frac{Z}{2a_0}\right)^{5/2} r \exp\left(\frac{-Zr}{2a_0}\right) \cos \theta$$

$$\psi_{21\pm 1} = \frac{1}{8\pi^{1/2}} \left(\frac{Z}{a_0}\right)^{5/2} r \exp\left(\frac{-Zr}{2a_0}\right) (\sin \theta) e^{\pm i\phi}$$

Quantum Number	Symbol	Possible Values
Principal Quantum Number	n	1, 2, 3,
Orbital or Angular Quantum	l	0,1,2,3,,(n-1)
Number		
Magnetic Quantum Number	m_l	-l,,0,1,, l
Spin Quantum Number	$m_{\scriptscriptstyle S}$	$\pm \frac{1}{2}$

These four quantum numbers are used to describe the probable location of an electron in an atom.