SUMMARY

A potential V(r) which depends only on the radial coordinate » and is
independent of the angular variables 6, ¢ is called a spherically symmetric
potential or a central potential.

For a spherically symmetric potential, the wave function y(r, 6, ¢) can
be written as a product of two functions; a radial function R(r) and an
angular function Y(6, ¢):

w(r, 6, ) = R(r) Y(6, ¢)
The angular function, which is common to all central potentials, is the
spherical harmonic Y;m!(ﬂ, ¢) discussed in chapter 7 . These are
eigenfunctions of the operators L? and L, with the eigenvalues /(7 + 1)i?

and m;h respectively, where / =0, 1,2, ... and m; =1, 1 - 1,..., 0,...,
-1+ 1, -1
The radial function R(r) satisfies the equation
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Its solution depends on the precise form of the potential V(7).
For a hydrogenic atom, for which,
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the normalized radial eigenfunctions are
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and Lii:}l(p) is the associated Laguerre polynomial. n is called the
principal quantum number and can have positive integral values.

The complete normalized energy eigenfunctions for a hydrogenic atom
are
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The bound-state energies for the hydrogenic atom are
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where o is the fine structure constant.

The expression for £, is same as that obtained in the Bohr model. The
energy depends only on the principal quantum number ». Since for each
n there are n” possible (Im;) combinations, and hence as many eigen-
functions, the eigenvalues are n°-fold degenerate. The mdegeneracy is
due to spherical symmetry of ¥{(r); the /-degeneracy is characteristic of
the Coulomb potential.

The complete normalized energy eigenfunctions for the hydrogenic atoms
Wm’m‘;(ra 95 ¢') - Rnf(r) Emg(eﬂ ¢)
n=12,3,...; 1=0,1,2,...,n—1
m=-1-1+1,...,0,....,] - L1

_ 3 1/2
2Z (n—1-1)! —p/2 1 y2I+1

Rn - = P Ln+

1(7) [”ﬁ'o ] o[t DT e "Tp L, (p)

m {(2] + 1) U - m;‘) ]}1”" m i

Y, (0,0)=(-1)" _ B'(cosB)e " ,m;=0

f 4t (1 + m)!
and
Yy, (6, 0)=(=1)" ¥_,, (6. 9). m< 0

le’ Legendre function of degree [ and order m; is defined as,

PIM(=&E) = (D" PM(E), m;=0,1,2, ..., 1

For the case m; = 0 Pi-&y= D) P(®
The first few Legendre polynomials are:
R(&)=1
RE)=¢

o
(E)=—(3E2 -1
P(&) 2(5 )

Ps<4=>=§<553— 3)

P = (35~ 308 +3)

Py(&) = %(63{{5 — 70&° + 15¢)




For the case m; # 0

The first few associated Legendre functions are:
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The first three radial eigenfunctions are:

The First Few Spherical Harmonics Y,,,, (6, ¢)
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The complete eigenfunctions for the lowest few states are:
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Quantum Number Symbol Possible Values
Principal Quantum Number n 1,2,3,..
Orbital or Angular Quantum l 01,2,3,..,(n—1)
Number
Magnetic Quantum Number m; -1,..,01,..,1
Spin Quantum Number ms +1
—2

These four quantum numbers are used to describe the probable location of an electron in

an atom.




